Extensions 1→N→G→Q→1 with N=C8⋊D7 and Q=C22

Direct product G=N×Q with N=C8⋊D7 and Q=C22
dρLabelID
C22×C8⋊D7224C2^2xC8:D7448,1190

Semidirect products G=N:Q with N=C8⋊D7 and Q=C22
extensionφ:Q→Out NdρLabelID
C8⋊D71C22 = D7×C8⋊C22φ: C22/C1C22 ⊆ Out C8⋊D7568+C8:D7:1C2^2448,1225
C8⋊D72C22 = SD16⋊D14φ: C22/C1C22 ⊆ Out C8⋊D71128-C8:D7:2C2^2448,1226
C8⋊D73C22 = D85D14φ: C22/C1C22 ⊆ Out C8⋊D71128+C8:D7:3C2^2448,1227
C8⋊D74C22 = D86D14φ: C22/C1C22 ⊆ Out C8⋊D71128-C8:D7:4C2^2448,1228
C8⋊D75C22 = D7×C8.C22φ: C22/C1C22 ⊆ Out C8⋊D71128-C8:D7:5C2^2448,1229
C8⋊D76C22 = D56⋊C22φ: C22/C1C22 ⊆ Out C8⋊D71128+C8:D7:6C2^2448,1230
C8⋊D77C22 = C56.C23φ: C22/C1C22 ⊆ Out C8⋊D71128+C8:D7:7C2^2448,1231
C8⋊D78C22 = C2×D56⋊C2φ: C22/C2C2 ⊆ Out C8⋊D7112C8:D7:8C2^2448,1212
C8⋊D79C22 = C2×SD16⋊D7φ: C22/C2C2 ⊆ Out C8⋊D7224C8:D7:9C2^2448,1213
C8⋊D710C22 = D28.29D4φ: C22/C2C2 ⊆ Out C8⋊D71124C8:D7:10C2^2448,1215
C8⋊D711C22 = D815D14φ: C22/C2C2 ⊆ Out C8⋊D71124+C8:D7:11C2^2448,1222
C8⋊D712C22 = C2×D8⋊D7φ: C22/C2C2 ⊆ Out C8⋊D7112C8:D7:12C2^2448,1208
C8⋊D713C22 = D813D14φ: C22/C2C2 ⊆ Out C8⋊D71124C8:D7:13C2^2448,1210
C8⋊D714C22 = C2×Q16⋊D7φ: C22/C2C2 ⊆ Out C8⋊D7224C8:D7:14C2^2448,1217
C8⋊D715C22 = D810D14φ: C22/C2C2 ⊆ Out C8⋊D71124C8:D7:15C2^2448,1221
C8⋊D716C22 = D811D14φ: C22/C2C2 ⊆ Out C8⋊D71124C8:D7:16C2^2448,1223
C8⋊D717C22 = C2×D7×M4(2)φ: C22/C2C2 ⊆ Out C8⋊D7112C8:D7:17C2^2448,1196
C8⋊D718C22 = C2×D28.C4φ: C22/C2C2 ⊆ Out C8⋊D7224C8:D7:18C2^2448,1197
C8⋊D719C22 = C28.70C24φ: C22/C2C2 ⊆ Out C8⋊D71124C8:D7:19C2^2448,1198
C8⋊D720C22 = D7×C8○D4φ: C22/C2C2 ⊆ Out C8⋊D71124C8:D7:20C2^2448,1202
C8⋊D721C22 = C2×D28.2C4φ: trivial image224C8:D7:21C2^2448,1191
C8⋊D722C22 = C56.49C23φ: trivial image1124C8:D7:22C2^2448,1203

Non-split extensions G=N.Q with N=C8⋊D7 and Q=C22
extensionφ:Q→Out NdρLabelID
C8⋊D7.C22 = D28.44D4φ: C22/C1C22 ⊆ Out C8⋊D72248-C8:D7.C2^2448,1232
C8⋊D7.2C22 = D8.10D14φ: C22/C2C2 ⊆ Out C8⋊D72244-C8:D7.2C2^2448,1224
C8⋊D7.3C22 = D28.30D4φ: C22/C2C2 ⊆ Out C8⋊D72244C8:D7.3C2^2448,1219

׿
×
𝔽